
2021 DSCOVR Science Team Meeting

Unique Observational Constraints on the Seasonal and 
Longitudinal Variability of Earth’s Planetary Albedo and 
Cloud Distribution Inferred from EPIC Measurements 

(Part 2)

Andrew Lacis, Barbara Carlson, Gary Russell
NASA Goddard Institute for Space Studies    New York, NY

Wenying Su
NASA Langley Research Center    Hampton, VA

NASA Goddard Space Flight Center    Greenbelt, MD
September 28 – 30, 2021



EPIC vs ModelE2  All-Cloud Sky Fraction

   NISTAR and EPIC-based Climate Diagnostics 

 

 6 

EPIC HEMISPHERIC COMPOSITE DATA 
 
Since clouds are the principal contributors to planetary albedo, the 
next step is to access the changes in cloud properties and the cloud 
distribution that produce the observed variability in planetary albedo. 
For this purpose, the necessary cloud property data are conveniently 
available in the form of the EPIC Composite data. 

In the process of generating the EPIC-based radiative SW fluxes, 
Su et al. (2018) constructed the 5-km resolution EPIC composite 
database, which includes detailed cloud properties such as cloud 
fraction, cloud-top altitude, and cloud optical depth, water/ice phase, 
and particle size, compiled from multiple imagers in low earth orbit 
(LEO) and geostationary (GEO) satellites, with the data selection 
tuned to closely match the EPIC observations in time and viewing 
geometry. Monthly-mean and sunlit hemisphere averages are thus 
available for longitudinal slicing analyses that match those for the 
radiative fluxes. With the EPIC composite data, it becomes possible 
to see the actual causes that lead to the radiative climate symptoms. 

The key component of this transformation is the 5-km resolution 
global composite data product with its optimally merged together 
cloud properties from Low Earth Orbit (LEO) satellites, and from 
geostationary (GEO) satellites, based on cloud property retrievals 
using a common set of retrieval algorithms (Minnis et al., 2008; 
Minnis et al., 2011). The 5-km composite data product is aggregated 
from LEO/GEO data for closeness in time and viewing geometry 
to the EPIC observation time, then convolved to the EPPIC grid.  

Ancillary data, such as surface type, snow/ice, skin temperature, 
and precipitable water, needed for anisotropic factor selection are 
also included in the EPIC composite (Khlopenkov et al., 2017). 
CERES Edition4 angular distribution models (Su et al., 2015) are 
then used to compute the SW anisotropic factors needed to convert 
the EPIC broadband radiances into reflected SW fluxes, which are 
integrated over the sunlit hemisphere to provide a basic calibration 
reference for NISTAR measurements, and serve as observational 
reference for climate GCM longitudinal slicing comparisons.  

Figure 5 Top Panel shows the seasonal variability for the EPIC 
derived all-cloud sky fraction for 2017 and 2018. The highest cloud 
fractions are found over the Pacific Ocean (22 GM, black-dot blue) 
and over the East-Asia region (3 GMT, black dot-green), except for 
the large dip in September-October of 2018 when North America 
(18 GMT, orange) is surging to its top value in October-November. 
The lowest cloud fractions are seen over the Atlantic West Africa 
region (13 GMT, black-dot light blue). Cloud cover over Africa-
Asia (8 GMT, black-dot magenta) trends below the daily-mean 
(heavy black line), or the “dayurnal” mean, a terminology that we 
are applying to a full day’s average over all longitudes, and over 
a full rotation of the Earth. This is to differentiate from the term 
“diurnal mean”, which has been previously used to refer to this 
special average, but which already has a well-established meaning 
of referring to a local 24-hour average, that should not be altered. 
The ‘dayurnal’ average incorporates a range of diurnal averages from 
neighboring longitudes, but its “locality” is at the Lissajous orbit.  

 
 

 
 
FIGURE 5 | All-cloud cloudy sky fraction (Top Panel) from EPIC Composite analysis results for the year 2017 (Top Left) and 2018 (Top Right). 
(Bottom Panel):  All-cloud cloudy sky fraction from GISS ModelE2 SHS in-line sampling results for the year 2017 (Bottom Left) and 2018 (Bottom Right). 
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The Figure 5 Bottom Panel depicts the seasonal variability of 
the ModelE2 cloudy sky fraction for the years 2017 and 2018, which 
corresponds to the EPIC all-cloud sky fraction that is shown in the 
Figure 5 Top Panel. Here again, the one redeeming feature of the 
ModelE2 all-cloud sky fraction is that ModelE2 tends to reproduce 
the overall longitudinal ordering of the EPIC all-cloud sky fraction 
results, at least in the NH summer months. For ModelE2 and EPIC, 
the highest cloud fractions occur over East-Asia (3 GMT, black-
dot green) and Pacific Ocean (23 GMT, black-dot dark blue) 
regions, while the lowest occur over Atlantic (13 GMT, black-dot 
light blue) and Africa-Asia (8 GMT, black-dot magenta) regions. 
The North America (18 GMT, black-dot orange) meridians are in 
between, exhibiting a biannual variability with maxima occurring in 
April-May and in October-November. For ModelE2, the ‘dayurnal’ 
amplitude of the seasonal cloud fraction amplitude is at maximum 
and also at minimum during the NH summer months, with strong 
constriction of the cloud fraction amplitude, during the NH winter 
months, and especially during November, behavior that is not seen 
in the EPIC cloud fraction results, which maintain a more-or-less 
uniform amplitude throughout the year..  

Figure 6 displays the cloudy sky fraction data from Figure 5 
in Hovmoller format with the EPIC cloud fraction at figure Left, 
and the ModelE2 results at Figure 6 Right. The Hovmoller results 
basically reproduce the spaghetti line plot results in showing the 
highest cloud fractions over the Pacific Ocean region with the 
lowest over the Atlantic, including also most of Europe and Africa 
and the eastern parts of North and South America.  

In comparing the EPIC cloud fraction variability between the La 
Nina year 2017 and 2018, there is no significant differences in their 
small-scale fluctuations between the two years. Except perhaps for 
a couple of points in April 2017 that seem to be coincident with 
similar isolated small-scale points occurring in April 2017 of the 
EPIC planetary albedo fluctuations in Figure 3, the two years 
similarly quiescent. Given the totally different nature of these two 
measurements, this is not surprising. For the EPIC planetary albedo, 
there is a well-defined conversion of observed spectral radiances 
into corresponding SW radiative fluxes for each pixel. On the other 
hand, for the EPIC cloudy sky fraction, thresholds are involved in 
deciding whether a given pixel mostly clear, or mostly cloudy, and 
at some threshold, optically thin clouds might be missed altogether. 
Moreover, with increasingly favorable meteorological conditions 
for cloud condensation, clouds tend to vertically in optical depth, 
rather than spreading out horizontally.  

For ModelE2, cloud fraction is defined in a still different way. 
Based on grid-box-mean meteorological conditions, a cloud fraction 
is determined at each grid box. A random number is then used to 
decide whether radiative calculations are to be performed for either 
a totally clear or totally cloudy grid box. Thus, as a computing time 
saving device, ModelE2 clouds are treated as being fractional in time 
rather than being fractional in space. Radiatively, for monthly-mean 
averages, it all averages out. Perhaps it is remarkable that the EPIC 
and ModelE2 cloud fractions agree as well as they do. As for the 
strongly constricted ‘dayurnal’ amplitude of the ModelE2 cloud-top 
altitude in the winter months, that remains to be investigated. 

 

FIGURE 6 | Hovmoller plot of the EPIC (Left) and ModelE2 (Right) cloudy sky fraction for 2017 and 2018. The Y-scale has time running downward starting 

with January 2017 at the top through December 2018 at the bottom. The X-scale is longitude running from -180o W longitude at the left and 180o E longitude at 

the right. The X-scale references the GMT of the noon-time Sum, starting at GMT=0 at the Date Line at the far right, proceeding westward to the left as the Earth 

rotates. Also included is the world map in the lower (2018) panel to help identify particular longitudes and GMTs with a more familiar geographical landmark. In 

the color bar, magenta identifies the highest planetary albedos, deep blue the lowest 
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While changes in cloud-top altitude have only minimal impact 

on the planetary albedo, they have a profound effect on the outgoing 
LW radiation due to the direct temperature dependence of thermal 
radiation that is emitted to space from the cloud-top region. As a 
result, cloud-top altitude is an important climate variable that is 
directly involved in defining the Earth’s radiative energy balance, 
but on the thermal outgoing LW radiation side. Thermal LW radiation 
is not included in the EPIC Composite Data collection, so here is no 
direct means for comparing cloud altitude and its radiative effects 
using the longitudinal data slicing methodology.  

Nevertheless, cloud-top altitude is one of the key cloud properties 
that are tabulated as part of the EPIC Composite Data (Su et al., 
2018). The cloud property information is retrieved from multiple 
imagers in low Earth orbit (LEO) satellites that include MODIS, 
VIIRS, and AVHRR, and also geostationary (GEO) satellites such as 
GOES-13, GOES-15, METEOSAT-7, METEOSAT-10, MTSAT-2, 
Himawari-8. Cloud properties were deduced using a common set 
of algorithms based on the CERES cloud detection and retrieval 
system (e.g., Minnis et al., 2008; Minnis et al., 2011). Cloud 
properties from the LEO/GEO imagers are merged together to 
provide a global composite data product with 5-km resolution by 
using an aggregated rating system that optimizes the space-time 
viewing geometry characteristics to provide the best match with 
EPIC observations. The global composite data are then remapped 
into the EPIC grid so as not to degrade the EPIC Composite cloud 
fraction information (Khlopenkov, et al., 2017).  

 
 The Figure 7 Top Panel displays the seasonal and longitudinal 

variability of the EPIC Composite cloud-top altitude. Interestingly, 
both the highest and the lowest cloud altitude occur in July, and more 
broadly, during the NH summer months for both 2017 and 2018, 
when the ‘dayurnal’ cloud-top amplitude is at its maximum. The 
highest cloud-top altitudes are experienced over the West China 
continental region (6 GMT, dot-dash magenta), while simultaneously, 
the lowest cloud-top altitudes occur over the North America region 
epitomized by the Iowa (18 GMT, black-dot orange) meridian. The 
minima in the cloud-top ‘dayurnal’ amplitude are seen in April and 
October in 2017, with a somewhat deeper minimum in October-
November of 2018. The annual-mean cloud-top altitude remains 
basically unchanged between 2017 and 2018 (exhibiting only an 
insignificant 1.3% increase).  

The Figure 7 Bottom Panel shows the seasonal and longitudinal 
variability of the GISS ModelE2 cloud-top altitude. There are some 
similarities in the overall shape of the seasonal variability of the 
cloud-top altitude between the EPIC and the ModelE2 results, in 
that the GCM also has a July centered NH summer maximum, with 
a mirror minimum, in the cloud-top ‘dayurnal’ amplitude, but with 
an extended (January to May) spring minimum, and a shortened 
(December) winter minimum. Moreover, there is substantial ramp-up 
in the dayurnal-mean of the cloud-top altitude from January to April, 
(heavy black line) followed by a steady delime. The same behavior 
is seen in the EPIC dayurnal-mean (Top Panel), but with a greatly 
reduced amplitude. However, the one big difference between the 

 
 

 
FIGURE 7 | Top Panel: All-cloud cloud-top altitude from EPIC Composite analysis results for the year 2017 (Top Left) and for the year 2018 (Top Right). 
Bottom Panel:  All-cloud cloud-top altitude (km) from GISS ModelE2 climate simulations for the year 2017 (Bottom Left) and 2018 (Bottom Right) sampled 
using the Sunlit Hemisphere Sampling (SHS) simulator and employing the DSCOVR Ephemeris viewing geometry. 
 
 
 
 
 
 



EPIC vs ModelE2  Cloud-top Altitude

   NISTAR and EPIC-based Climate Diagnostics 

 

 9 

EPIC and ModelE2 cloud-top altitude variability is the difference in 
the longitudinal ordering. For EPIC, cloud-top altitude maxima are 
centered over West China (6 GMT, dot-dash magenta), whereas the 
ModelE2 cloud-top altitude maxima are centered over East-Asia 
(3 GMT, black-dot green). Similarly, the EPIC, cloud-top altitude 
minima are centered over North America region epitomized by 
Iowa (18 GMT, black-dot orange), whereas the ModelE2 cloud-top 
altitude minima are centered more over the Atlantic Ocean region 
(13 GMT, black-dot light blue). 

The apparent shift in longitude between the cloud-top altitude 
location between the EPIC observational data and the ModelE2 
climate simulation is made far more clearly evident in the Hovmoller 
representation of the cloud-top altitude variability, as demonstrated 
in Figure 8. The Hovmoller format shows both the maxima and the 
minima to be longitudinally aligned, and that his holds for both 
EPIC (Left) and ModelE2 (Right). For EPIC, the ridge of cloud-top 
altitude maxima for 2017 and 2018 are persistently located along 
the 6 GMT (90o E longitude) meridian running through central Asia 
(W China). Similarly, a broad valley of cloud-top altitude minima 
for years 2017 and 2018 are persistently located along the 17 GMT 
(–75o W longitude) meridian that runs through New York of the 
North America longitude group. Extremes in cloud-top maximum 
and minimum altitudes both occur during the NH summer season 
centered on July.  

A similar pattern in the seasonal and longitudinal variability of 
cloud-top altitude appears also to hold for ModelE2, as shown in 
Figure 8 Right. The principal difference is a general eastward shift 
by about 45o in longitude of the ridge of cloud-top maxima, and an 
eastward shift by about 60o in longitude for the cloud-top minima. 

Another difference between EPIC and ModelE2 cloud-top altitude 
variability is the more limited range of variability for the ModelE2 
cloud-top maximum altitudes, and a larger range of variability for 
the cloud-top minimum altitudes, compared to EPIC. 

 Perhaps the biggest difference, but also one of less significance, 
is the large difference in the cloud-top altitude depicted in Figure 7, 
which shows the mean cloud-top altitude for EPIC to be about 4 km, 
while the average cloud-top altitude for ModelE2 clouds is about 
8 km. The reasons for this difference arise from the limited ability 
of satellite remote sensing measurements to detect optically thin 
clouds, and also the retrieved, or inferred, cloud-top altitude refers 
to the optical depth t = 1.0 level. For ModelE2 clouds, cloud-top 
pressure is known precisely for all of the model generated clouds, 
and that includes significant numbers of optically thin (t < 0.1) high 
altitude cirrus clouds (which automatically constitute the grid-box 
cloud-top). Also, since the ModelE2 diagnostics assign the cloud 
layer’s top edge as the cloud-top, this is setting the ModelE2 cloud 
top at the optical depth t = 0 level, which further biases higher the 
ModelE2 cloud-top results. Since all of the ModelE2 cloud optical 
depth information is available at the SHS diagnostic data sampling 
aggregation, it should be possible to establish a thin-cloud threshold, 
compute the optical depth t = 1.0 level, and re-define the ModelE2 
cloud-top altitude to more closely coincide with the observational 
cloud-top data.  

Also of interest, because the EPIC Composite LE/GEO cloud 
products are retrieved separately for liquid water and ice clouds 
(Minnis et al., 2021), the differences in the seasonal and longitudinal 
variability for the ice-cloud the water-cloud altitude can thereby be 
also examined separately, as done in Figure 9 and Figure 10.  

 
FIGURE 8 | Hovmoller plots of the EPIC (Left) all-cloud cloud-top altitude from EPIC Composite analysis results for 2017 and 2018, and ModelE2 (Right) 
from GISS ModelE2 climate simulations for the years 2017 and 2018, for the corresponding line plots of cloud-top altitude in Figure 7. 
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For additional perspective, Figure 11 Left shows the Hovmoller 

ratio for years 2018/2017 of the seasonal variability of the water 
cloud sky fraction. With the baseline seasonal change removed, 
the results show substantial increases in sky fraction in February 
2018 over the East Pacific and North America regions, and again in 
July over North America and Eur-Asia longitudes. Decreases that 
are seen over the Atlantic region (11 to 15 GMT) in Aril and 
September imply higher La Niña-year Atlantic cloud fractions. 

 

 
Figure 11 Right shows the Hovmoller ratio for years 2018/2017 

of the seasonal variability of the water cloud altitude. Relative to 
2017, water cloud altitude shows a substantial increase in February 
over nearly all longitudes and a more localized increase in April 
over East Asia. The regions where the La Niña-year water cloud-top 
altitudes were higher than in 2018 occur over the 6 to18 GMT range 
from West China to North America, and also in September from 
3 to 13 GMT from Japan to West Africa longitudes. 

 

 
FIGURE 10 | Left: Hovmoller format ice-cloud altitude from EPIC Composite analysis results for the year 2017 (Upper left) and 2018 (Lower left). 
Right Panel: Water-cloud altitude from EPIC Composite analysis results for the year 2017 (Upper right), and for year 2018 (Lower right). 
 
 
 
 
 
 

 
FIGURE 11 | Hovmoller ratio of year 2018 divided by year 2017 of the EPIC Composite water cloud sky fraction (Left) and cloud-top altitude (Right). 
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The 2017 La Niña year differences relative to the non-La Niña 

year of 2018 are evident in the EPIC planetary albedo differences 

between 2017 and 2018. While it is clear that cloud changes are the 

principal contributors to the radiative SW flux changes that define 

the planetary albedo changes, it remains to identify the principal 

cloud changes between the La Niña and non-La Niña conditions. 

Undoubtedly, the seasonal and longitudinal changes in cloud cover 

and cloud-top altitude described above are observationally the most 

accurately determined of the different cloud properties. But it is 

less clear as to how the changes in cloud cover and cloud altitude 

contribute to the observed changes in planetary albedo. The cloud 

optical depth and cloud particle size are the more difficult cloud 

properties to determine with precision by remote sensing. But, 

they are more directly involved in defining the radiative effect of 

clouds. Since the cloud property retrievals for the EPIC Composite 

data were made separately for liquid water and ice clouds (Minnis 

et al., 2008), cloud optical depths and particle sizes are available for 

water and ice clouds for the EPIC longitudinal slicing comparisons. 

In the retrieval process, many approximations and assumptions 

need to be made, particularly for ice clouds that directly impact 

the optical depths and particle sizes that are retrieved. However, 

for the comparisons made here, it is the relative changes in these 

cloud properties that matter, not their absolute value.  

Accordingly, Figure 12 Upper left shows the seasonal variability 

in ice-cloud optical depth for year 2017, and Upper right for 2018. 

The North America region (18 GMT, black-dot orange) has the 

largest ice-cloud optical depths with a seasonal variability that 

exhibits a steady buildup followed by more rapid decrease. The 

optical depth maxima occur in February, July, and November. In 

2017, the minima occur in April and September, while in 2018, the 

deepest minimum occurs in May, while secondary minima occur in 

January, September, and November. The seasonal pattern of the 

optical depth variability is different for the smallest optical depths. 

The minima for the smallest optical depths occur in January, April 

and September in 2017, and also in 2018, but with a much stronger 

April minimum and greatly broadened September minimum. But the 

most significant difference is the much-reduced ice-cloud optical 

depth for the entire year of 2018 compared to 2017, including also 

a reduction in the ‘dayurnal’ amplitude of the optical depth.  

The Lower panel shows the seasonal variability of water-cloud 

optical depth. There is a similarity in the ice-cloud optical depth 

in that they both exhibit persistent April and September minima, 

with the April minimum increasing greatly in strength in 2018. 

There is a substantially different pattern of seasonal variability in 

2017 than in 2018, However, the water cloud optical depth shows 

little difference between 2017 and 2018. 

 
FIGURE 12 | Upper left: Ice-cloud optical depth from EPIC composite analysis results for the year 2017. Upper right: Ice-cloud optical depth for the year 2018. 
Lower left: Water-cloud optical depth from EPIC composite analysis results for the year 2017. Lower right: Water-cloud optical depth for the year 2018. Because 
of how the water-cloud and ice-cloud fractions are defined, the Ice-cloud optical depth represents the optical depth of the entire column.  
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The Hovmoller contour plot in Figure 13 Left demonstrates 

convincingly the dramatic decrease in the ice cloud optical depth 
as part of the changes in cloud properties between the nominal La 
Niña year conditions prevailing in 2017 (Zhang et al., 2019), 
relative to the non-La Niña, or the more neutral ENSO conditions 
of 2018. As already noted, ice cloud optical depths are notoriously 
difficult to retrieve form remote sensing radiance measurements. 
Complex radiative transfer calculations that are tractable only for 
plane-parallel geometry and homogenous clouds are involved. To 
circumvent the radiative transfer modeling complexities numerous 
modeling approximations and assumptions are needed to be made. 
Ice clouds come in a variety of shapes and sizes that range from 
rosettes to columns to oriented flat plates. One key point is that for 
modeling reflected solar radiation, the asymmetry parameter for 
nonspherical ice cloud particles is significantly smaller than it is 
for spherical water cloud particles, which can be readily computed 
from Mie theory, whereas the appropriate ice cloud scattering 
functions are more difficult to obtain. Also, because the retrieval 
radiative modeling assumes homogenous plane-parallel geometry, 
assumptions need to be made implicitly, or explicitly, about the 
sub-pixel cloud heterogeneity. 

There is potential for further bias in that the dayside hemisphere 
cloud property retrievals could be biased toward high-Sun viewing 
geometry. Nevertheless, all of these concerns are of a secondary 
significance since the EPIC Composite construction systematically 
selects only those cloud property retrievals that most closely 
match the EPIC viewing geometry and time of observation. Thus, 
it is more than adequate to treat the EPIC Composite cloud optical 
depth as ‘effective’ optical depths, and their differences as real.  

 
Thus, in the EPIC Composite cloud property data, the largest 

of the ice cloud optical depths form a ridge in the 15 to 21 GMT 
range corresponding to the North America longitude region, with 
a July-August island in the 9 to 12 GMT range (Iraq to England 
longitudes). It should also be noted that the ‘effective’ ice cloud 
optical depth refers to the entire cloud column, even though the 
lower layer clouds are undoubtedly liquid water clouds. Thus, the 
Hovmoller contour plot in Figure 13 Left suggests an abrupt and 
dramatic change in global ice cloud optical depths from La Niña 
conditions in 2017 to neutral ENSO conditions of 2018.  

The Hovmoller plot in Figure 13 Right describes the changes 
in water cloud optical depth between 2017 and 2018. Like the ice 
cloud longitudinal optical depth distribution, the EPIC Composite 
for water cloud optical depths also forms a ridge slightly eastward 
of the 15 to 21 GMT ice cloud optical depth ridge. In Figure 12 
Bottom, the global annual mean of the water cloud optical depth 
decreases only slightly. But the Figure 13 Right Hovmoller plot 
tells a very different story. While the annual-mean water cloud 
optical depth might not have changed that much, there is an entire 
second ridge of water cloud optical depths from 6 to 9 GMT (that 
corresponds to West China to Iraq longitudes). This second ridge 
of water cloud optical depths stops abruptly in February of 2018. 
Thus, for the water cloud optical depth, it is not so much a decrease 
in the column water cloud optical depth, as it is a decrease in the 
geographic area over which the water cloud optical depth operates. 
For both ice cloud and water cloud optical depths, the optical depth 
changes take place in those regions where the cloudy sky fraction 
is somewhat smaller than the average, and without any dramatic 
change in cloud fraction. 

 
FIGURE 13 | Left: Hovmoller format ice-cloud optical depth from EPIC Composite analysis results for year 2017 (Upper left) and 2018 (Lower left). 
Right Panel: Water-cloud optical depth from EPIC Composite analysis results for the year 2017 (Upper right), and for year 2018 (Lower right). 
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 Cloud particle size is a more difficult quantity to measure and 
quantify than the optical depth, in particular for ice clouds, which 
occur in a variety of habits ranging from flat plates to elongated 
needles to complex fractal structures. Expressing the ice cloud size 
in terms of ‘equivalent’ spheres is common practice. Equivalent 
spheres work well for thermal radiation, where multiple scattering 
effects are minimal. For SW radiation, equivalent spheres tend to 
underestimate the amount of reflected radiation since the asymmetry 
parameter for spheres is significantly larger than it is for particles of 
nonspherical shape. Thus, assumptions are needed to specify the 
proper asymmetry parameter. Also, sub-grid cloud heterogeneity, 
needs to be specified in retrieval algorithms to retrieve cloud 
optical depth and particle size information from reflected spectral 
radiances. Both optical depth and particle size are important climate 
variables. Cloud optical depths can vary greatly with cloud type, 
and cloud particle sizes are typically larger for clouds over ocean 
than on land. Also, particle sizes are larger for ice clouds compared 
to water clouds. Accordingly, significant variability in particle size 
can be expected both seasonally and with longitude. 

Figure 14 Top shows the seasonal and longitudinal variability 
of the ice-cloud particle size for 2017 at Left, and 2018 at Right, 
with the caveat that if the top pixel-level cloud is identified as an 

ice-cloud, the entire column is treated as being ice, with the cloud 
optical depth and particles size being an average over the entire 
column. Ice-cloud sizes in 2017 (Left) show a low amplitude bi-
annual seasonal variability with similar maxima in March and 
November, and minima in January and July. At Upper right, the 
seasonal variability of the ice-cloud particle size for 2018 exhibits a 
similar bi-annual longitudinally stratified behavior, but with a 
substantially reduced longitudinal amplitude. Also, there is a shift 
in the longitudinal ordering with the Pacific (22 GMT) replacing 
North America (18 GMT) as the region with the largest ice-cloud 
particle size. There is also a shift in the Atlantic (13 GMT) region 
drifting toward smaller particle sizes, while the East-Asia particle 
sizes show an increase, leaving the Africa-Asia region at the 
bottom with the smallest particle sizes. 

Lower left of Figure 14 displays the seasonal variability of the 
water-cloud particle size for 2017. Like in the ice-cloud case, there 
is similar longitudinal stratification, but with the bi-annual variability 
more subdued. The North America region (20 GMT, orange) has 
the largest particle sizes, followed by the Pacific, East-Asia, and the 
Atlantic. Western China (6 GMT) and India (7 GMT) exhibit the 
smallest water-cloud particle sizes. East Iran (8 GMT) and Western 
Africa (8 GMT) join the small-size group in 2018.  

 
FIGURE 14| Upper left: Ice-cloud particle size from EPIC composite analysis results for the year 2017. Upper right: Ice-cloud particle size for the year 2018. 
Lower left: Water-cloud particle size from EPIC composite analysis results for the year 2017. Lower right: Water-cloud particle size for the year 2018. Because 
of how the Water-cloud and Ice-cloud fractions are defined, the Ice-cloud particle size represents the optical depth of the entire column.  
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Figure 15 Left displays the Hovmoller version of the ice cloud 

particle size for the years 2017 (Upper left) and 2018 (Lower Left), 
and similarly for water cloud particle size for years 2017 (Upper 
Right) and 2018 (Lower Right). The 2017 La Niña year results 
show a dog-bone shaped, longitudinally oriented ice-cloud particle 
size dependence that is centered on the 16 GMT Barbados eastern 
edge longitude of the North America group, similar to the ridge 
seen for ice-cloud optical depth in Figure 13 Left. The ice-cloud 
particle size has its principal maximum in April, with a somewhat 
smaller secondary maximum in November. The longitudinal ridge 
of maximum particle size decreases sharply in December as an 
apparent end to La Niña conditions. In 2018, this ridge shifts to a 
substantially lower maximum, drifting westward toward the Pacific 
region eastern edge at 21 GMT, which geographically corresponds 
to West Canada. The underlying reasons for the ice-cloud particle 
size decrease from the 2017 La Niña conditions are not clear.   

There is a similar 5-10% decrease from year 2017 to 2018 in the 
water cloud particle size. Figure 15 Right shows the Hovmoller 
plot for water cloud particle size for the years 2017 (Upper left) 
and 2018 (Lower Left). The space-time distribution of water-cloud 
particle sizes shows a longitudinal ridge structure with the largest 
particles sizes in the 15-21 GMT North America-East Pacific region, 
next largest in the 0-3 GMT East-Asia region, and a smaller ridge 
in the 9-12 GMT East Atlantic region. The water-cloud particle 
size decrease from 2017 to 2018 parallels that of the ice-cloud 
particle size with a sharp year-end decrease into 2018, including 
also a slight westward shift of the 15-21 GMT ridge structure. The 
9-12 GMT ridge also shows a similar decrease from 2017 to 2018, 
while the 0-3 GMT East-Asia region shows no change,   

 
DISCUSSION 

 
Perhaps the most interesting finding of this study is the remarkable 
change in the regional-scale intra-seasonal variability of planetary 
albedo from the year 2017 to 2018 (see the Hovmoller contour plot, 
Figure 3 Left). Year 2017 has been identified as a La Niña year 
(Zhang et al., 2019), characterized by the appearance of colder sea 
surface temperatures (SSTs) in the Eastern and Central Pacific, 
with strong winds blowing ripples of warm water westward. Loeb 
et al. (2021) find a decrease in the Earth’s absorbed solar radiation 
by about 0.8 Wm–2 from 2017 to 2018 (which translates to a 
global-mean planetary albedo increase by about 0.23% from 2017 
to 2018). They attribute most of the global decrease in absorbed 
solar radiation to clouds, noting that the Niño 3.4 SST index was 
decreasing in 2017, and increasing during 2018. 

The notable feature in the Figure 3 EPIC 2017 planetary albedo 
Hovmoller map is the ubiquitous activity that is persistent during 2017 
compared to the relatively quiescent behavior during 2018. (This 
relatively quiescent behavior is also evident in the ModeE2 results 
for both 2017 and 2018, given that the same current climate SST 
climatology is being used for both years.) The characteristic 2017 
La Niña year oscillations are about a month in duration and about 
30o (~3000 km) extent in longitude. Since the EPIC reflected solar 
SW fluxes were normalized to the CERES global annual mean 
(due to uncertainties in absolute hemispheric flux arising from the 
changes in viewable fraction due to Lissajous orbital geometry), 
there is no change in the global annual-mean EPIC planetary albedo. 
However, the Loeb et al. (2021) decrease in absorbed solar flux is 
a clear indication of increased cloudiness from 2017 to 2018. 

 
FIGURE 15 | Left: Hovmoller format ice-cloud particle size from EPIC Composite analysis results for year 2017 (Upper left) and 2018 (Lower left). 
Right Panel: Water-cloud particle size from EPIC Composite analysis results for the year 2017 (Upper right), and for year 2018 (Lower right). 
 
 
 
 
 
 



CERES-based Earth Energy Imbalance over Past Two Decades

Geophysical Research Letters

3. Results
3.1. Changes in Net TOA Flux and Energy Uptake

We previously estimated, from in situ annual estimates of energy uptake 
by Earth's climate system, the EEI at 0.70 ± 0.10 W m−2 (expressed here in 
terms of average heat uptake applied over Earth's surface area with 5–95% 
confidence intervals) from mid-2005 to mid-2015 (Johnson et al., 2016). 
We noted a 0.78 correlation between 0 and 1,800 m year-to-year variations 
in ocean heating rate and satellite-based EEI from CERES. As detailed in 
Section  2.2, here we update our calculations, extend them to 2,000  m, 
and find a net heat uptake rate of 0.77 ± 0.06 W m−2 from mid-2005 to 
mid-2019 (Figure 1). With the longer time-series, the rate has increased, 
and the uncertainty has reduced slightly. The correlation between year-
to-year rates of a global 0–2,000 m ocean heat uptake and CERES EEI 
is 0.70 for the mid-2005 to mid-2019 estimates. An F test for equality of 
two variances indicates that we cannot reject the null hypothesis that the 
sample variances of the in situ and satellite EEI datasets are equal at the 
0.05 significance level.

A striking new result is that from the mid-2005 to mid-2019 estimates 
the trend of the energy flux for 0–2,000 m ocean heat content anomaly 
(OHCA) is 0.43 ± 0.40 W m−2 decade−1, and the trend for the net CERES 
TOA energy flux is 0.50 ± 0.47 W m−2 decade−1 over that same time period 
(Figure 1, dashed lines). The trend in the difference between the CERES 

and in situ data is 0.068 ± 0.29 W m−2 decade−1. Trends are determined using least squares linear regression 
and uncertainties in the trends correspond to 5–95% confidence intervals, accounting for autocorrelation 
in the data following the methodology of Santer et al. (2000). This remarkable increase in EEI is consistent 
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Figure 1. Comparison of overlapping one-year estimates at 6-month 
intervals of net top-of-the-atmosphere annual energy flux from the Clouds 
and the Earth's Radiant Energy System Energy Balanced and Filled Ed4.1 
product (solid red line) and an in situ observational estimate of uptake of 
energy by Earth climate system (solid blue line). Dashed lines correspond 
to least squares linear regression fits to the data.

Figure 2. Global mean top-of-atmosphere flux anomalies and trends. Anomalies in (a) absorbed solar radiation (ASR), (b) emitted thermal radiation (ETR) and 
(c) Net for 2002/09–2020/03. Thin lines correspond to monthly anomalies, thick lines are 12-month running averages. Trends in (d) ASR, (e) ETR and (f) Net 
associated with contributions from changes in clouds, water vapor (WV), combined contributions from trace gases and solar irradiance (labeled as “Other”), 
surface albedo (SFC), aerosols (AER) and combined contributions from skin temperature and profiles of temperature (“Temp”). “Total” corresponds to the 
sum of the individual contributions. Error bars correspond to 5–95% confidence intervals determined using the methodology in Santer et al. (2000). Positive 
anomalies and trends correspond to heat gain, and negative to loss. ETR is defined positive downwards and is thus equal to −outgoing longwave radiation.

Figure 2. from Loeb et al. (2021). (a) Absorbed solar radiation. (b) Emitted thermal radiation. The 
results imply an increase in the reflected solar radiation by about 1.0 Wm–2 from year 2017 to 2018, 
and also an increase in outgoing thermal radiation by about 0.5 from year 2017 to 2018.



EPIC La Nina Activity Detection based on 2017-2018 Changes

1. Planetary Albedo: Short period (~month), relatively small-scale (30o, 3000 km) variability    
Cloud Property Changes Global Annual-mean Changes

2. Ice-cloud Sky Fraction: Ice-cloud fraction increases by: 4.76%  from  0.210 
3. Water-cloud Sky Fraction: Water-cloud fraction decreases by: 0.25%  from  0.401 
4. Ice-cloud Altitude: Ice-cloud altitude increases by: 0.69%  from  7.23 km
5. Water-cloud Altitude: Water-cloud altitude decreases by: 1.93%  from  2.11 km
6. Ice-cloud Optical Depth: Ice-cloud COD decreases by: 7.56%  from  4.84
7. Water-cloud Optical Depth: Water-cloud COD decreases by: 1.65%  from  4.94
8. Ice-cloud Particle Size: Ice-particle size decreased by: 4.92%  from  26.2 µm
9. Water-cloud Particle Size: Water-particle size decreased by: 4.42%  from  15.8 µm

Closure Constraints
1. Reflected Solar Radiation: Reflected solar radiation increased by:    ~1.0 Wm–2 (Loeb et al., 2021)
2. Emitted Thermal Radiation: Emitted thermal radiation increased by:  ~0.5 Wm–2 (Loeb et al., 2021)



Sunlit Hemisphere Sampling (SHS) Simulator FORTRAN Code

Latitude Zones:  SP=(S90-S30)  ST=(S30-Eq)  NT=(Eq-N30)  NP=(N30-N90)  SH=(S90-Eq)  NH=(Eq-N90)

NISTAR-type Projected Area View:  SUNdat is from L1 point,  SATdat & SADdat are from Lissajous orbit

Flat Area View:  (from L1 point):  HEMdat views entire Sunlit Hemisphere only, GCMdat view is day & night
(from Lissajous orbit):  EPIdat & EPDdat sample viewable fraction of Sunlit Hemisphere

Dst = Earth-Satellite distance dependent viewable fraction  (2Pi for Far-View; less than 2Pi for finite distance)

(SHS FORTRAN code is available to interested DSCOVR Science Team members) 
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3. Methodology 
The basic upgrading of the longitudinal slicing ModelE2 and EPIC cloud property comparisons, as 
outlined above, is straightforward. We will continue to improve and modify the ModelE2 SHS output 
diagnostics to be in closer agreement with measurement characteristics and their limitations. Thus, 
instead of identifying the cloud-top altitude by the location of the top-most cloud (no matter how 
optically thin), we will calculate the location of the t = 1.0 level of the GCM cloud column. This 
would be more in accord with observations since cloud heights in both SW and LW measurements 
are typically established at the t ~ 1.0 level. We will also work with DSCOVR Project investigators 
to include other climate system variables, such as atmospheric water vapor and LW thermal fluxes, 
in the EPIC Composite data tabulations used for hemispheric averaging and longitudinal slicing 
comparisons, and to refine the GCM and EPIC definitions for separation of cloud cover into water-
cloud and ice-cloud fractions, including the further separation of the ice-cloud into fraction into 
t < 1.0 and t > 1.0 components for a more precise tracking of active weather systems.  

However, the main focus of this study is on extending the longitudinal slicing methodology to 
retain latitudinal information in the sunlit hemisphere averaging process. As it is, the meteorological 
weather noise is fully averaged out, and the rotation of the Earth enables preservation of the basic 
longitudinal variability of the climate system. Unfortunately, latitudinal information gets averaged 
out in the process. The importance of this problem stems from Stephens et al. (2015) finding that 
the Northern and Southern Hemispheres reflect same amount of sunlight within about 0.2 Wm–2, 
despite having land/ocean and surface albedo distributions. The question to be answered is how is this 
remarkable hemispheric energy balance accomplished? Clearly, zonal cloud changes are involved. 

We will address this problem by subdividing the globe into latitudinal zones, and performing the 
sunlit hemisphere averaging piecewise over these latitude zones to retain the most basic latitudinal 
information. In the piecewise averaging process, it is important to maintain precise accounting of 
all fractional subdivisions in the sampling of the different climate system variables to assure that 
there is precise alignment of the space-time sampling of the model generated and the observational 
data. To this end, we have developed an off-line laptop version of the Sunlit Hemisphere Sampling 
(SHS) model to test different aspects of viewing geometry and zonal subdivision on the sampling 
of data projected on a unit radius sphere with a latitude-longitude grid superimposed to simulate 
the sampling of GCM output data in accord with DSCOVR Satellite viewing geometry. 

There are four equal surface-area latitude zones of 30o extent: South Polar (SP), South Tropical 
(ST), North Tropical (NT), and North Polar (NP). In addition, there is: Southern Hemisphere (SH), 
Northern Hemisphere (NH), and the Entire Globe (EG). There are 7 types of viewing geometry 
considered as summarized in Table 1. The first three are a NISTAR-type projected-area disk view, 
with the unit-sphere projected area (EG) is equal to p. Of these, (1) SUNdat views the Earth from 
the Lagrangian L1 point, (2) SATdat is the Lissajous orbital NISTAR-view, and (3) SADdat is the 
Lissajous orbital view, but also includes the Earth-Satellite distance dependence. View-types 4–6 
have the same viewing geometry attributes as 1–3, but their perspective is that of the actual viewable 
surface area, which is equal to 2p, which is the perspective used for the EPIC Composite data.     

 
TABLE 1.  Modeled on a 1x1 degree grid on a unit sphere, their (365-day annual mean) areas are: 
          Latittude Zone:       SP        ST        NT        NP        SH        NH        EG   
  1       SUNdat Far-View    0.641444  0.918774  0.924059  0.657295  1.560218  1.581354  3.141573 
  2       SATdat Far-View    0.649225  0.917716  0.919639  0.654994  1.566940  1.574633  3.141573 
  3       SADdat Dst-View    0.644148  0.913867  0.915801  0.649901  1.558015  1.565702  3.123717 
  4       HEMdat Far-View    1.558963  1.568966  1.572627  1.582630  3.127929  3.155256  6.283185 
  5       EPIdat Far-View    1.566929  1.570507  1.571085  1.574663  3.137437  3.145749  6.283185  
  6       EPDdat Dst-View    1.558331  1.565808  1.566385  1.565856  3.124139  3.132242  6.256380 
  7       GCMdat Far-View    3.141593  3.141593  3.141593  3.141593  6.283185  6.283185 12.566371 



Conclusions
1. NASA’s DSCOVR Mission EPIC and NISTAR data provide new and unique

diagnostic perspective for assessing global climate model performance.

2.   NISTAR data are unique for NIR/SW spectral ratio diagnostic capability       
to assess global climate model radiative transfer spectral treatment.

3.   EPIC climate-style planetary albedo diagnostics show GISS ModelE2 
overestimates clouds over oceans, underestimates clouds over land.

4.   EPIC Hovmoller maps provide La Nina activity detection via planetary 
albedo space-time variability. 

5. Zonal dependence can, and should be, implemented in longitudinal slicing.


